29 research outputs found

    A Neural Circuit Model for Prospective Control of Interceptive Reaching

    Full text link
    Two prospective controllers of hand movements in catching -- both based on required velocity control -- were simulated. Under certain conditions, this required velocity controlled to overshoots of the future interception point. These overshoots were absent in pertinent experiments. To remedy this shortcoming, the required velocity model was reformulated in terms of a neural network, the Vector Integration To Endpoint model, to create a Required Velocity Integration To Endpoint modeL Addition of a parallel relative velocity channel, resulting in the Relative and Required Velocity Integration To Endpoint model, provided a better account for the experimentally observed kinematics than the existing, purely behavioral models. Simulations of reaching to intercept decelerating and accelerating objects in the presence of background motion were performed to make distinct predictions for future experiments.Vrije Universiteit (Gerrit-Jan van Jngen-Schenau stipend of the Faculty of Human Movement Sciences); Royal Netherlands Academy of Arts and Sciences; Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409

    Visual and musculoskeletal underpinnings of anchoring in rhythmic visuo-motor tracking

    Get PDF
    Anchoring, that is, a local reduction in kinematic (i.e., spatio-temporal) variability, is commonly observed in cyclical movements, often at or around reversal points. Two kinds of underpinnings of anchoring have been identified—visual and musculoskeletal—yet their relative contributions and interrelations are largely unknown. We conducted an experiment to delineate the effects of visual and musculoskeletal factors on anchoring behavior in visuo-motor tracking. Thirteen participants (reduced to 12 in the analyses) tracked a sinusoidally moving visual target signal by making flexion–extension movements about the wrist, while both visual (i.e., gaze direction) and musculoskeletal (i.e., wrist posture) factors were manipulated in a fully crossed (3 × 3) design. Anchoring was affected by both factors in the absence of any significant interactions, implying that their contributions were independent. When gaze was directed to one of the target turning points, spatial endpoint variability at this point was reduced, but not temporal endpoint variability. With the wrist in a flexed posture, spatial and temporal endpoint variability were both smaller for the flexion endpoint than for the extension endpoint, while the converse was true for tracking with the wrist extended. Differential anchoring effects were absent for a neutral wrist posture and when gaze was fixated in between the two target turning points. Detailed analyses of the tracking trajectories in terms of velocity profiles and Hooke’s portraits showed that the tracking dynamics were affected more by wrist posture than by gaze direction. The discussion focuses on the processes underlying the observed independent effects of gaze direction and wrist posture on anchoring as well as their implications for the notion of anchoring as a generic feature of sensorimotor coordination

    A Re-Appraisal of the Effect of Amplitude on the Stability of Interlimb Coordination Based on Tightened Normalization Procedures

    Get PDF
    The stability of rhythmic interlimb coordination is governed by the coupling between limb movements. While it is amply documented how coordinative performance depends on movement frequency, theoretical considerations and recent empirical findings suggest that interlimb coupling (and hence coordinative stability) is actually mediated more by movement amplitude. Here, we present the results of a reanalysis of the data of Post, Peper, and Beek (2000), which were collected in an experiment aimed at teasing apart the effects of frequency and amplitude on coordinative stability of both steady-state and perturbed in-phase and antiphase interlimb coordination. The dataset in question was selected because we found indications that the according results were prone to artifacts, which may have obscured the potential effects of amplitude on the post-perturbation stability of interlimb coordination. We therefore redid the same analysis based on movement signals that were normalized each half-cycle for variations in oscillation center and movement frequency. With this refined analysis we found that (1) stability of both steady-state and perturbed coordination indeed seemed to depend more on amplitude than on movement frequency per se, and that (2) whereas steady-state antiphase coordination became less stable with increasing frequency for prescribed amplitudes, in-phase coordination became more stable at higher frequencies. Such effects may have been obscured in previous studies due to (1) unnoticed changes in performed amplitudes, and/or (2) artifacts related to inappropriate data normalization. The results of the present reanalysis therefore give cause for reconsidering the relation between the frequency, amplitude, and stability of interlimb coordination

    A dynamical neural network for hitting an approaching object

    Get PDF
    Abstract. Besides making contact with an approaching ball at the proper place and time, hitting requires control of the effector velocity at contact. A dynamical neural network for the planning of hitting movements was derived in order to account for both these requirements. The model in question implements continuous required velocity control by extending the Vector Integration To Endpoint model while providing explicit control of effector velocity at interception. It was shown that the planned movement trajectories generated by the model agreed qualitatively with the kinematics of hitting movements as observed in two recent experiments. Outstanding features of this comparison concerned the timing and amplitude of the empirical backswing movements, which were largely consistent with the predictions from the model. Several theoretical implications as well as the informational basis and possible neural underpinnings of the model were discussed

    Error correction in bimanual coordination benefits from bilateral muscle activity: evidence from kinesthetic tracking

    Get PDF
    Although previous studies indicated that the stability properties of interlimb coordination largely result from the integrated timing of efferent signals to both limbs, they also depend on afference-based interactions. In the present study, we examined contributions of afference-based error corrections to rhythmic bimanual coordination using a kinesthetic tracking task. Furthermore, since we found in previous research that subjects activated their muscles in the tracked (motor-driven) arm, we examined the functional significance of this activation to gain more insight into the processes underlying this phenomenon. To these aims, twelve subjects coordinated active movements of the right hand with motor-driven oscillatory movements of the left hand in two coordinative patterns: in-phase (relative phase 0°) and antiphase (relative phase 180°). They were either instructed to activate the muscles in the motor-driven arm as if moving along with the motor (active condition), or to keep these muscles as relaxed as possible (relaxed condition). We found that error corrections were more effective in in-phase than in antiphase coordination, resulting in more adequate adjustments of cycle durations to compensate for timing errors detected at the start of each cycle. In addition, error corrections were generally more pronounced in the active than in the relaxed condition. This activity-related difference was attributed to the associated bilateral neural control signals (as estimated using electromyography), which provided an additional reference (in terms of expected sensory consequences) for afference-based error corrections. An intimate relation was revealed between the (integrated) motor commands to both limbs and the processing of afferent feedback

    Crossing Virtual Doors: A New Method to Study Gait Impairments and Freezing of Gait in Parkinson’s Disease

    Get PDF
    Studying freezing of gait (FOG) in the lab has proven problematic. This has primarily been due to the difficulty in designing experimental setups that maintain high levels of ecological validity whilst also permitting sufficient levels of experimental control. To help overcome these challenges, we have developed a virtual reality (VR) environment with virtual doorways, a situation known to illicit FOG in real life. To examine the validity of this VR environment, an experiment was conducted, and the results were compared to a previous "real-world" experiment. A group of healthy controls (N = 10) and a group of idiopathic Parkinson disease (PD) patients without any FOG episodes (N = 6) and with a history of freezing (PD-f, N = 4) walked under three different virtual conditions (no door, narrow doorway (100% of shoulder width) and standard doorway (125% of shoulder width)). The results were similar to those obtained in the real-world setting. Virtual doorways reduced step length and velocity while increasing general gait variability. The PD-f group always walked slower, with a smaller step length, and showed the largest increases in gait variability. The narrow doorway induced FOG in 66% of the trials, while the standard doorway caused FOG in 29% of the trials. Our results closely mirrored those obtained with real doors. In short, this methodology provides a safe, personalized yet adequately controlled means to examine FOG in Parkinson's patients, along with possible interventions

    ‘Haste makes waste’:The tradeoff between walking speed and target-stepping accuracy

    No full text
    Background: When environmental conditions require accurate foot placement during walking (e.g., on a rough path), we typically walk slower to avoid tripping, slipping or stumbling. Likewise, hurrying too much is a common situational circumstance of walking-related falls. This suggests a tradeoff between walking speed and stepping accuracy in situations that demand precise foot placement. Research question: How can this expected tradeoff between walking speed and stepping accuracy best be parameterized? Methods: In Experiment 1, participants (n = 20) walked at five different speeds over an irregularly spaced sequence of projected stepping targets. Participants were instructed to place their feet accurately onto the targets, while following a constant-speed cue running alongside the walkway. Stepping accuracy was parameterized as overall (RMSE, root mean square error), variable (VE) and constant (CE) stepping errors, quantified over targets as well as per target. In Experiment 2, we determined preferred walking speed and stepping accuracy for regularly and irregularly spaced stepping targets. Results: Repeated-measures ANOVAs revealed that RMSE and VE grew linearly with increasing speeds, both over targets as well as per target. Per target CE varied in magnitude and sign with variations in inter-target spacing: for shorter inter-target spacing targets were overshot (CE > 0), while for longer inter-target spacing targets were undershot (CE < 0). This effect was stronger for faster speeds and for targets preceded by the shortest and longest inter-target spacing. Preferred walking speed and per-target VE did not differ between regularly and irregularly spaced targets. Significance: Participants stepped less precisely when walking faster. The linear increase in VE with faster speeds was consistent with Schmidt's law regarding the speed-accuracy tradeoff. The systematic comparison of stepping errors over regularly and irregularly spaced stepping-target conditions further provided important clues on how to best parameterize stepping accuracy: per stepping target using VE (i.e., stepping inconsistency), complemented with CE (i.e., stepping bias) in case of irregular inter-target spacing

    Virtual Footprints Can Improve Walking Performance in People With Parkinson's Disease

    Get PDF
    In Parkinson's disease (PD) self-directed movement, such as walking, is often found to be impaired while goal directed movement, such as catching a ball, stays relatively unaltered. This dichotomy is most clearly observed when sensory cueing techniques are used to deliver patterns of sound and/or light which in turn act as an external guide that improves gait performance. In this study we developed visual cues that could be presented in an immersive, interactive virtual reality (VR) environment. By controlling how the visual cues (black footprints) were presented, we created different forms of spatial and temporal information. By presenting the black footprints at a pre-specified distance apart we could recreate different step lengths (spatial cues) and by controlling when the black footprints changed color to red, we could convey information about the timing of the foot placement (temporal cues). A group of healthy controls (HC; N = 10) and a group of idiopathic PD patients (PD, N = 12) were asked to walk using visual cues that were tailored to their own gait performance [two spatial conditions (115% [N] and 130% [L] of an individual's baseline step length) and three different temporal conditions (spatial only condition [NT], 100 and 125% baseline step cadence)]. Both groups were found to be able to match their gait performance (step length and step cadence) to the information presented in all the visual cue conditions apart from the 125% step cadence conditions. In all conditions the PD group showed reduced levels of gait variability (p < 0.05) while the HC group did not decrease. For step velocity there was a significant increase in the temporal conditions, the spatial conditions and of the interaction between the two for both groups of participants (p < 0.05). The coefficient of variation of step length, cadence, and velocity were all significantly reduced for the PD group compared to the HC group. In conclusion, our results show how virtual footsteps presented in an immersive, interactive VR environment can significantly improve gait performance in participants with Parkinson's disease
    corecore